BVVMd-3 Rectangular measuring unit

VAV, CAV & FLOW MEASURING DAMPERS

01/02/2022

Quick facts

- Sizes from 200-200 mm to 2000-2000 mm
- Pressure sensor range 0-300 Pa
- Adjustment can be done at site.
- Display shows the current pressure
- Modbus communication is available as an option

Use

BVVMd is an electronic measuring unit for flow measurement in all types of ventilation installations. The air flow can be read on the display or read remotely with a linear output signal 2-10 V or 0-10 V between 0 and a nominal flow. Modbus communication is available as an option.

Materials and surface treatment

Casing and components of hot-dip galvanized sheet steel according to corrosion class C3. The damper is supplied as standard in pressure class A and leakage class 1. Alternative casing and component materials available on request for higher pressures and environmental requirements.

Specification

Example: Flow measurement unit	BVVMd - 3 - <u>400 - 200</u>
<i>Type:</i> Rectangular = 3	
<i>Size:</i> W x H mm	

Electrical data

Supply voltage:	24V AC/DC +-20%
Output:	0,5 W (1,5 VA)
Ambient temp:	0°C - 50°C

1600

Dimensions

Technical data

Sound data

Correction of sound power level, $\mathrm{L}_{\mathrm{w}}^{},$ for different sizes

$L_w = L_{wt} + K_1$								
Damper- area, m ²	0,12	0,25	0,5	1,0	2,0	3,0	4,0	
K,	-3	0	3	6	9	10,5	12	

Correction of sound power level, $\mathrm{L}_{_{\mathrm{wok,}}}$ in octave band

$L_{wok} = L_w + K_{ok}$							
Mid frequency Hz	125	250	500	1000	2000	4000	8000
K _{ok}	-3	-6	-9	-12	-17	-16	-25

Installation

Function, Connection

Damper actual value signal 2-10 V or 0-10 V corresponds to a flow between zero and the nominal flow of the damper. For rectangular dampers, nominal flow is equivalent to 8 m/s in the duct. At air velocity below 1.5 m/s, measurement uncertainty increases.

Wiring diagram

